学术报告

学术报告

您当前所在位置: 首页 > 学术报告 > 正文
报告时间 2025年4月19日(周六);下午3:30—5:00 报告地点 南校区网络安全大楼 121 会议室
报告人 周彦

学术沙龙主题: PB-DiffHiC: a statistically principled method for detecting differential chromatin interactions using raw pseudo-bulk Hi-C data

报告人: 周彦,深圳大学教授


报告时间: 2025年4月19日(周六);下午3:305:00

报告地点:南校区网络安全大楼 121 会议室

邀请人:李本崇

报告人简介:周彦,深圳大学数学科学学院教授,博士生导师,统计与数据科学系主任。毕业于东北师范大学,曾在UIUC从事博士后工作,2015年进入深圳大学工作。曾访问香港大学,香港浸会大学等。主要研究方向为生物统计,机器学习,医学统计等。获得深圳市孔雀计划奖励C类。主持国家面上项目,国家青年项目等数项。以第一或通讯作者身份在Genome Research(影响因子:14.38),Bioinformatics(影响因子:7.38),Statistics in Medicine, BMC Genomics等期刊上发表SCI论文四十余篇。兼职广东省高等学校教学指导委员会委员;广东省现场统计协会副理事长,常务理事;中国现场统计协会理事;中国环境资源统计学会和多元统计学会常务理事等。



报告摘要: Single-cell Hi-C data provide unprecedented opportunities for analyzing differential chromatin interactions, essential for understanding genome structure-function relationships across various biological conditions. However, differential chromatin interaction analysis requires Hi-C data at high resolutions (e.g., 10 Kb), and due to the sparsity of scHi-C data, existing methods typically rely on single cell imputation or conventional bulk approaches, which can comprise the reliability of differential interaction detection. Here, we present PB-DiffHiC, a new optimized parametric statistical framework that directly analyzes the raw pseudo-bulk Hi-C data at 10 Kb resolution between conditions. PB-DiffHiC incorporates Gaussian convolution, stability of short-range interactions, and Poisson distribution to enable joint normalization and detection of significant differential chromatin interactions. Benchmark using cell-type-specific chromatin loops shows that PB-DiffHiC achieves higher precision than alternative methods. Applying PB-DiffHiC to pseudo-bulk and matched bulk Hi-C data demonstrate stronger concordance with identified differential interactions, reinforcing reliability. In a case study, PB-DiffHiC successfully identifies Kcnq5-associated differential interactions, closely matching SnapHiC-D results despite not relying on single-cell imputation. Therefore, PB-DiffHiC is a statistically sound method for enhanced comparative analysis of chromatin interactions using raw pseudo-bulk Hi-C data at 10 Kb resolution. The source code of PB-DiffHiC is publicly available at https://github.com/Tian-Dechao/PB-DiffHiC.



上一篇:人工智能与统计智慧

下一篇:Recent progress for the heterogeneous multiscale method

关闭